The HIV-1 Tat protein activates transcription from an upstream DNA-binding site: implications for Tat function.
نویسندگان
چکیده
The Tat protein of human immunodeficiency virus type 1 (HIV-1) activates transcription following binding to nascent trans-activation response (TAR) RNA downstream of the transcription start site. Because Tat functions when bound to RNA, and in a position-dependent manner, it has been proposed that Tat works by a novel mechanism. Here, we perform a series of protein fusion experiments that reveal striking similarities between Tat and conventional cellular activators. Most significantly, we demonstrate that Tat can function when bound to upstream promoter DNA. This activity depends on a region within Tat that is also required for Tat to function when bound to TAR RNA. In contrast, the arginine-rich region of Tat, which is required for binding to TAR RNA, is dispensable for the function of DNA-bound Tat. When bound either to RNA or DNA Tat activity requires cooperation with promoter-bound cellular transcription factors. Finally, we show that Tat and a strong acidic activator stimulate transcription to comparable levels. On the basis of these and other results we suggest that Tat and acidic activators act on a similar step in the transcription process.
منابع مشابه
Artificial zinc finger fusions targeting Sp1-binding sites and the trans-activator-responsive element potently repress transcription and replication of HIV-1.
Tat activates transcription by interacting with Sp1, NF-kappaB, positive transcription elongation factor b, and trans-activator-responsive element (TAR). Tat and Sp1 play major roles in transcription by protein-protein interactions at human immunodeficiency virus, type 1 (HIV-1) long terminal repeat. Sp1 activates transcription by interacting with cyclin T1 in the absence of Tat. To disrupt the...
متن کاملHuman immunodeficiency virus type 1 Tat binding protein-1 is a transcriptional coactivator specific for TR.
The DNA-binding domain of nuclear hormone receptors functions as an interaction interface for other transcription factors. Using the DNA-binding domain of TRbeta1 as bait in the yeast two-hybrid system, we cloned the Tat binding protein-1 that was originally isolated as a protein binding to the human immunodeficiency virus type 1 Tat transactivator. Tat binding protein-1 has subsequently been i...
متن کاملHIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1.
Human immunodeficiency virus-1 tat (HIV-tat) protein, like other proinflammatory cytokines (such as TNF), activates a wide variety of cellular responses, some of which play a critical role in progression of HIV infection. Whether HIV-tat, like TNF, also activates c-Jun N-terminal kinase (JNK) and the transcription factor activator protein (AP)-1 is not known. We show that treatment of human his...
متن کاملControlling Cellular P-TEFb Activity by the HIV-1 Transcriptional Transactivator Tat
The human immunodeficiency virus 1 (HIV-1) transcriptional transactivator (Tat) is essential for synthesis of full-length transcripts from the integrated viral genome by RNA polymerase II (Pol II). Tat recruits the host positive transcription elongation factor b (P-TEFb) to the HIV-1 promoter through binding to the transactivator RNA (TAR) at the 5'-end of the nascent HIV transcript. P-TEFb is ...
متن کاملTat is required for efficient HIV-1 reverse transcription.
The ability of human immunodeficiency virus-1 (HIV-1) to undergo efficient reverse transcription is dependent on a number of parameters. These include the binding of the tRNA(3)(Lys) to the HIV-1 primer binding site and the subsequent interaction with the heterodimeric reverse transcriptase. Recently, we demonstrated that TAR RNA was also necessary for efficient HIV-1 reverse transcription. Giv...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genes & development
دوره 5 12B شماره
صفحات -
تاریخ انتشار 1991